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Abstract—Multivariate data contain an abundance of information and many techniques have been proposed to allow humans to
navigate this information in an ordered fashion. For this work, we focus on methods that seek to convey multivariate data as a collection
of bivariate scatterplots or parallel coordinates plots. Presenting multivariate data in this way requires a regime that determines in what
order the bivariate scatterplots are presented or in what order the parallel coordinate axes are arranged. We refer to this order as a
visualization sequence. Common techniques utilize standard statistical metrics like correlation, similarity or consistency. We expand on

the family of statistical metrics by incorporating the rigidity of causal relationships. To capture these relationships, we first derive a
causal graph from the data and then allow users to select from several semantic traversal schemes to derive the respective chart
sequence. We tested the sequences with a crowd-sourced user study and a user interview to confirm that the causality-informed
visualization sequences help viewers to better grasp the causal relationships that exist in the data, as opposed to sequences derived

from correlations or randomization alone.

Index Terms—Causality, Causal Graph, Visualization Sequence, Multivariate Visualization, Parallel Coordinates

1 INTRODUCTION

ULTIVARIATE data analysis can enable researchers
Mand practitioners to uncover meaningful insights,
make informed decisions, and optimize processes. Exam-
ples include analyzing healthcare data to identify associa-
tions between patient demographics, medical history, and
treatment outcomes; investigating consumer behavior data
to uncover connections between customer demographics,
product preferences, and marketing campaigns; and explor-
ing environmental data to understand the impact of climate
change on temperature, precipitation, and species diversity.

A prime goal in multivariate data analysis is to uncover
the intricate relationships that exist among the variables,
conveying a comprehensive understanding of the complex
system that underlies the data. An attractive method for this
purpose is to learn a causal model from the data. Causal
models can effectively elucidate linear relationships and
interdependencies that exist among the variables and are
easily visualized as node-link diagrams. While these models
can reveal more semantics than simple summary statistics,
they do not allow the analyst to detect irregularities, out-
liers, and unusual data patterns. Conversely, visualization
capitalizes on the unsurpassed power of the human visual
system to quickly recognize these types of irregularities.

There is a large arsenal of visualization methods, at a
wide gamut of complexity. A bivariate scatterplot is the
simplest visualization that can give a viewer insight into
data relations, but among two variables only. A Parallel
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Coordinates Plot (PCP) [1] draws each data point as a line
across several parallel data axes and as such can visualize
more than two variables. Other techniques for multivariate
data employ data embeddings, such as MDS [2], t-SNE [3],
and UMAP [4], to name the most prominent, but their
scatterplot projections primarily focus on the depiction of
clusters and neighborhood relations.

Bivariate scatterplots are widely used and can clearly
reveal relationships between two continuous variables. Ad-
ditional attributes can be encoded using depth in 3D scatter-
plots or retinal variables such as color, shape, and size. But
3D plots often suffer from perceptual issues like occlusion,
distortion, and visual clutter [5], while overloading 2D plots
with more than one or two retinal encodings can reduce
interpretability [6]. Hence the upper bound on the number
of variables that can be represented in scatterplots is low.

To explore multivariate relationships with a larger num-
ber of variables, one alternative is to construct a sequence
of bivariate scatterplots. However, with n variables, the
number of plots and possible sequence orderings grows
rapidly—for example, six variables yield 15 scatterplots and
15! permutations, while PCPs give rise to 6! axis order-
ings—both resulting in a combinatorial explosion.

Bridging the gap between causal inference and data
visualization, we introduce a novel approach that leverages
a causal network to create a coherent sequence of bivariate
scatterplots or PCP axes. The order in which the plots
are presented ensures that each visualization builds upon
the previous one, progressively unveiling the underlying
causal structure with visual evidence. Viewers follow the
sequence from start to finish, thereby grasping the intricate
relationships in multivariate data. As a causal graph can
be traversed in many ways, multiple causal sequences can
be created, each uniquely narrating the same data. We use
the term coherent to emphasize causal consistency and di-
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rectional interpretability in these sequences, distinguishing
them from arbitrary or correlation-based orderings.

Our paper is organized as follows. Section 2 lists some
related work. Sections 3 and 4 present our narrative graph
traversal schemes and prototype to create and edit the
resulting sequences. Section 5 presents quantitative and
qualitative validations. Section 6 and 7 discuss the result,
limitations of our work, and some future work.

2 RELATED WORK

We divide the related work into two main areas, namely
data visualization with bivariate scatterplots and with PCPs,
specifically emphasizing information navigation. Further,
we also touch on work in the domain of narrative data vi-
sualization to provide a wider context to our proposed data
navigation method which we refer to as causal narratives.

2.1 Information Navigation with Scatterplots

A scatterplot can show the relationship between two vari-
ables and allow its viewers to immediately understand how
strong the relationship is. A shortcoming of this visualiza-
tion is that it can only display two variables at a time, and so
a natural extension is to combine multiple scatterplots into a
matrix called Scatterplot Matrix (SPLOM) [7]. It is practical
to order the plots by strength of relationship [8], such as
correlation or more complex notions of similarity [9], but
the order of visual traversal of the plots is still left to the
viewer, with no guidance provided.

A more sophisticated method is to use a quality-based
visualization matrix [10] whose rows are ordered according
to overall dimension quality gauged by e.g. Class Consis-
tency [11]. One may also take advantage of the concept of
Scagnostics [12] which parameterizes scatterplots as a vector
of appearance attributes, such as skew and stringiness. The
ScagExplorer [13] performs clustering in this space and
identifies a set of leader and follower plots which are then
laid out into various spatial configurations. None of these
methods, however, provides a unique sequence of plots that
can be “read” from start to finish.

Interaction can significantly improve information nav-
igation. The groundbreaking work by Elmqvist et al. [14]
presented the Rolling Dice method that allows users to
perform animated transitions among scatterplot matrix tiles
that share a common dimension. The motion parallax in the
temporary 3D animation fosters a better understanding of
the information shared among the two tiles. Users can de-
sign multi-tile tours across the scatter matrix (with multiple
transitions) and so gradually increase their understanding
of the multivariate space. However, there is no analytical
guidance to specify the paths of these tours. Our method
can complement this paradigm by providing automatically
generated causal tours to accelerate data understanding
without the need for interaction.

While scatterplot matrices are powerful tools for vi-
sualizing pairwise relationships, they are rarely used in
mainstream visual storytelling—especially for general au-
diences. Even highly data-literate outlets like The New York
Times seldom use scatterplot matrices, including small ones
(e.g., 3x3), but frequently employ individual scatterplots
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to convey complex ideas in intuitive ways. Our goal is to
preserve analytical rigor while designing visualizations that
are familiar and cognitively approachable, following prior
work in visual communication and journalism that empha-
sizes simplicity, familiarity, and narrative flow as essential
for engagement and comprehension [15]. We achieve this
by reinterpreting the scatterplot matrix as a causal sequence
of bivariate plots, making multivariate data more accessible.
A generalization of the scatterplot is the biplot [16]
where data points and dimension axes are projected into
the two most significant principal components. Since the
projection is linear, the only distortion is due to the lack
of contribution of the less significant principal components.
The Subspace Voyager [17] allows users to tilt a biplot with a
3D trackball interface, transitioning into adjacent subspaces
for a gradual exploration of the multivariate space. This
interface is a generalization of the Rolling Dice method and
can be supported by our causal network traversal schemes.
Another method to explore multivariate data through a
sequence of projections is the Grand Tour [18], which uses
projection pursuit [19] to generate dynamic views by opti-
mizing statistical “interestingness”—such as variance, clus-
tering, or correlation. These sequences are mathematically
driven and may lack semantic or domain interpretability.
In contrast, our method produces a deliberate sequence of
standard scatterplots by traversing a causal graph, where
each step follows a directed dependency. This results in
visualization sequences that are not just statistically in-
formative, but also interpretable in terms of cause-effect
mechanisms grounded in domain understanding.

2.2

The strength of a PCP is that multivariate data can be read
from left to right, forming a narrative structure told by the
order of the data dimensions. The information that can be
discerned this way strongly depends on the ordering of the
axes, and this has been a topic of extensive research, both
on automatic and on interactive methods.

Ankerst et al. [9] proposed a similarity metric that
compares two dimensions based on the root-mean-square
distances of all data points. The dimension ordering is then
optimized via an approximate traveling salesman solver.
Tatu et al. [20] introduced a similarity-based measure based
on Hough transforms. Johansson and Johansson [21] de-
fined a weighted metric that assesses dimensions by their
importance in correlation, outlier detection, and subspace
cluster significance to select relevant dimensions for a PCP.
Similarly, Artero et al. [22] explored the correlation of di-
mension pairings to optimize the ordering. Zhang et al. [23],
[24] allowed users to interactively design an axis ordering
on a correlation map of the variables.

Dasgupta and Kosara [25] proposed several metrics
based on the visual appearance of polylines to deter-
mine optimal dimension orderings. Peng et al. [26] fo-
cused on minimizing clutter and outliers between adja-
cent dimensions while establishing the ordering. Ferdosi
and Roerdink [27] ordered the dimensions based on high-
dimensional structures identified through subspace clus-
tering. Finally, Yang et al. [28] employed hierarchical di-
mension filtering in conjunction with dimension clustering

Information Navigation with Parallel Coordinates
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using Ankerst’s metric, and subsequently enabled users to
interactively navigate the hierarchy to create their desired
ordering. Regardless of whether the aforementioned works
are interactive or not, none utilize causality as their metric
for ordering PCP dimensions into a sequence.

Blumenschein et al. [29] investigated how different data
patterns, such as correlation, outliers, clusters, skew, and
clutter are exposed by the various existing ordering meth-
ods. Extending this study, Tyagi et al. [30] developed real-
time detection schemes for these patterns and implemented
an interactive visual user interface by which users could
specify preferences and generate the most appropriate di-
mension ordering. These approaches focus on interactive
PCP axis ordering guided by data patterns while ours aims
to automate the ordering process with respect to the user’s
chosen causal graph traversal strategy.

2.3 Narrative Data Visualization

Our method can be considered an approach for narrative vi-
sualization because a visualization sequence chooses which
visualization appears first, similar to how a narrative or-
ders scenes. However, the overall design space of narrative
visualization is far broader than sequencing. The seminal
work of Segel and Heer [15] offers a systematic review of
the design space and narrative structures. They describe
seven fundamental narrative genres that have different char-
acteristics including one without a prescribed ordering [31].
These so-called reader-driven narratives are not in the scope
of our work. We focus on a subset of strict author-driven
narratives which visually show data in linear sequences
directed by causality. Hence we will refer to the narratives
we create as causal narratives.

In addition, prior work has shown that narrative or-
dering and framing in visualization shape interpretation
and inference [32], and that visualizations can be designed
to explicitly support causal reasoning [33]. Our approach
leverages these insights to construct strictly author-driven,
causally ordered visual narratives.

3 METHODOLOGY

In this section, we describe how causal graphs are used
to generate visualization sequences via different traversal
strategies, or “narratives.” Figure 1 shows an example input
graph and resulting sequences for both PCPs and scat-
terplots. Each narrative corresponds to a specific strategy
and is illustrated using examples from multiple datasets, as
implemented in our prototype (Section 4).

3.1 Causal Graph Generation

The first step of our method is to generate a causal graph
that represents the directional dependencies between a
dataset’s variables. Following the foundational work by
Pearl [34] and Spirtes et al. [35], we represent causal rela-
tionships as a directed acyclic graph (DAG), where nodes
are variables and edges denote causal influence. Each edge
has a polarity (positive or negative) and a strength derived
from partial correlation tests.

To construct the causal graph several causal model pack-
ages can be used, such as TETRAD, DoWhy, and the causal-
learn library. We make use of the interactive visual causality
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tool by Wang et al. [36] [37], which allows analysts to edit
the causal graph when the automatically inferred structure
does not fully align with domain knowledge. Without loss
of generality, we currently support only numerical data.

What sets causal analysis apart is that it provides
stronger explanatory power than correlation alone. While
correlation captures statistical associations, causal relation-
ships imply directionality and enable reasoning about coun-
terfactuals—the highest level on Pearl’s “causal ladder” [38].
For example, a car’s weight affects its fuel economy (MPG),
but not vice versa. A causal graph reflects this asymmetry
by assigning a directed edge from weight to MPG, enabling
sequences that follow meaningful, cause-effect orderings. In
contrast, correlation cannot determine direction and may
lead to spurious or misleading sequences that obscure the
true structure of the data.

However, causal discovery algorithms rely on strong
assumptions, such as the absence of hidden confounders
and the sufficiency of the measured variables. These as-
sumptions may not hold in practice, and no algorithm can
guarantee recovery of the true causal structure without
expert input. To address this, the system by Wang et al. [36]
allows users to edit and refine the causal graph, enabling
domain knowledge to guide the visualization sequences.

3.2 Narrative Graph Generation

With the causal graph of a dataset in place, we can now
construct a narrative graph. Since each edge in a causal
graph is a causal relation, it represents a logical progression,
which is a key ingredient of any author-driven narrative.
The causal narratives we are interested in are driven by the
presentation of causal relationships that reveal dependen-
cies between different variables. Shown as a directed node-
link diagram, a narrative graph traverses a causal graph and
orders visualizations into a sequence.

For a bivariate scatterplot, each directed causal edge
generates a chart where the cause variable is mapped to
the x-axis and the effect variable is mapped to the y-axis.
They correspond to the tail and the head of an arrow,
respectively. Following the next causal edge, the previous
effect variable becomes the cause variable and switches to
the x-axis. The new effect variable takes its place on the y-
axis. This generates a sequence where adjacent scatterplots
are causally connected as a chain.

Likewise, for a PCP, the cause and effect variables of a
causal edge are assigned to the left and right axes. Because
a PCP can show more than two variables at a time, the next
causal edge need not switch axes and can simply add a
variable as another axis to the right of the existing ones. A
causal chain can be presented as one visualization in PCP.

The main task of generating a narrative graph from a
causal graph is to select which causal relationships or chains
to include in the narrative and to decide in which order to
present them. The selection of causal chains is determined
by the type of narrative. Each chain is then turned into a
node or a sequence of nodes in the narrative graph. Note
that this approach to narrative generation is independent of
the domain of the data.

Figure 2 shows narrative graphs constructed from three
basic causal relationships: causal chain (mediator), common
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Fig. 1: (a) Causal graph for the Cars dataset. Solid and dashed edges denote positive and negative weights, respectively. (b)
Causal sequence for the exhaustive narrative graph traversal scheme designed to be used with a PCP. The dimension pairs
in bold font indicate the focused causal relations in each panel. (c) Causal sequence for the exhaustive narrative traversal

scheme designed to be used with bivariate scatterplots.
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Fig. 2: Different narrative graphs are the result of both the graph topology and visualization type: PCP and scatterplot.
From top to bottom, examples here are of three typical patterns: causal chain (mediator), common cause (confounder), and
common effect (collider). A, B, C, and D denote different data variables that are connected by arrows to form different
causal graphs. A rectangle surrounding the letters indicates a visualization of respective variables; a PCP can show many
variables at once so a box can contain ABC, for instance, while a scatterplot can present at most two variables such as
AB. A complete traversal in PCP may simply be one plot while the same traversal in scatterplot may need more plots to
flashback to go through all variables. If a chain, say BC, is short, it may not be necessary to traverse back to the previous

chain in order to move forward to the next chain.

cause (confounder), and common effect (collider). Different
causal graph structures are expected to lead to different
narrative graphs. Also, different visualization types can
produce different narrative graphs. For instance, a simple
chain of causal relationships can be represented by one PCP,
while a sequence of bivariate scatterplots (one per causal
relation or variable pair) is necessary to convey the same
information. Our current prototype implements only two
visualization types: scatterplot and PCP.

As shown in Figure 2, each narrative graph node can
be revisited as many times as necessary. In some cases,
this creates a flashback to the sequential flow which we will
explain further below.

As a causal graph can be traversed in numerous ways,
there are many possible narratives. In this paper, we propose
four different traversal schemes which lead to four different
narratives: (1) exhaustive, (2) detective, (3) dramatic, and
(4) journalistic narratives. Some narratives may be more
appropriate for certain audiences or purposes. Our goal at
this point is not to automatically select the best narrative
but to suggest some possible ones to the users of our proto-
type. The user interface, as described in the supplementary
materials allows choosing between these four generated

narratives and further edit them.

Exhaustive Narrative

This narrative gives a complete overview of all causal re-
lationships, so it is often the longest and the most detailed
of all proposed narratives. For a connected graph structure,
common graph traversal algorithms are directly applicable
to this task. We chose the depth-first search algorithm as
it naturally follows causal chains and backtracks to the
closest unvisited variables. Causal graph nodes that have
no incoming edges, i.e. they are not an effect of any cause,
serve as the root nodes for the search algorithm. The search
extracts all chains from those roots to any leaf nodes, which
have no outgoing edges or are not a cause of any effect. As
a causal graph is a directed acyclic graph, there are always
such root and leaf nodes and the algorithm always works.
As mentioned earlier, different visualization types may
result in different narrative graphs, given the same causal
graph. A PCP can display several variables in one visual-
ization so it can show an entire causal chain. An exhaustive
narrative graph for PCP can thus simply present all causal
chains from the search algorithm. To minimize abrupt visual
changes, all chains are sorted by length and then swapped



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

#eylinders displacement weight MPG
8

Chain 1. Data in view: #cylinders, displacement,
weight and MPG. #cylinders and displacement
are positively correlated (r=0.95). Displacement and
weight are positively correlated (r=0.93). Weight and
MPG are negatively correlated (r=-0.79).

#eylinders displacement weight time to accelerate
8

Chain 2. #cylinders, displacement, weight and time
to accelerate. #cylinders and displacement are posi-
tively correlated (r=0.95). Displacement and weight
are positively correlated (r=0.93). Weight and time to
accelerate are weakly negatively correlated (r=-0.43).

5

time to accelerate

#eylinders
8

displacement horsepower

Chain 3. #cylinders, displacement, horsepower (HP)
and time to accelerate. #cylinders and displacement
are positively correlated (r=0.95). Displacement and
HP are positively correlated (r=0.87). HP and time to
accelerate are negatively correlated (r=-0.68)

Fig. 3: An automatically generated exhaustive sequence for the Cars dataset with PCPs.
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Frame 1. Data in view: #cylinders (x-axis) and dis-
placement (y-axis). #cylinders and displacement are
positively correlated (r=0.95).
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Frame 4. Data in view: weight (x-axis) and time to
accelerate (y-axis). Weight and time to accelerate are
weakly negatively correlated (r=-0.43).
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Frame 2. Data in view: displacement (x-axis) and
weight (y-axis). Displacement and weight are posi-
tively correlated (r=0.93).
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Frame 5. Data in view: displacement (x-axis) and
horsepower (y-axis). Displacement and horsepower
are positively correlated (r=0.87).
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weight

Frame 3. Data in view: weight (x-axis) and MPG (y-
axis). Weight and MPG are negatively correlated (r=-
0.79).

time to accelerate

horsepower
Frame 6. Data in view: horsepower (x-axis) and time
to accelerate (y-axis). Horsepower and time to accel-
erate are negatively correlated (r=-0.68).

Fig. 4: An automatically generated exhaustive sequence for the Cars dataset with scatterplots. Not shown is the flashback

frame after Frame 4, where Frame 1 would be repeated after Frame 4.

to reduce local edit distances between adjacent paths. The
polylines are also bundled and colored for better readability.

Figure 1(b) shows an exhaustive narrative graph for a
PCP of the Cars dataset [39]. There are three causal chains,
all starting with the causal relation from ‘#cylinders’ to
‘displacement’” and then branching off into two relationships
of the same cause variable ‘displacement’ to two different
effect variables, ‘weight” and “horsepower’. Two out of three
chains end with ‘time to accelerate” while the final variable
of the third chain is ‘"MPG’. Figure 3 presents these three
chains as a sequence in PCPs.

A scatterplot can present only two variables at a time, so
each visualization of an exhaustive narrative for scatterplot
can display only one causal link between two variables.
The first visualization starts from one of the root variables.
While traversing, the current and the next causal relations

share a variable, i.e. the effect of the former and the cause
of the latter. When the effect variable is a leaf variable, the
search algorithm backtracks to an unexplored branch and
the exhaustive narrative structure includes a flashback to the
nearest scatterplot whose effect variable is the cause variable
of the new chain’s first scatterplot.

Figure 1(c) shows an exhaustive narrative graph for scat-
terplots of the Cars dataset and Figure 4 presents its corre-
sponding sequence. Due to space limitation, the figure does
not show the flashback visualization that is the scatterplot of
the number of cylinders and engine displacement which is
the first cause variable of the new chain.

To accentuate the causal flow in a sequence, certain data
samples are selected to give examples to the narrative. They
are highlighted as a yellow mark in a scatterplot and a
yellow polyline in a PCP. For positively correlated variables,
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Intro. Data dimensions: MPG, #cylinders, displace-
ment, horsepower, weight, time to accelerate and year

#eylinders displacement weight time to accelerate
8

Optimize time to accelerate by (chain 2): decreas-
ing weight, decreasing displacement, and decreasing
#cylinders.

The highlighted example has: low #cylinders, low
displacement, low weight, and low time to accelerate.

time to accelerate

“ s
miles per gallon

Goal 1: high MPG, Goal 2: low time to accelerate

Coloring indicates if samples meet both (purple), one
(blue/green), or neither (grey) goal polarities. Colors
differ from those used for clustering in the PCPs.

#eylinders displacement horsepower time to accelerate
8

Optimize time to accelerate by (chain 3): increas-
ing horsepower (HP), increasing displacement, and
increasing #cylinders.

The highlighted example has: high #cylinders, high
displacement, high HP, and low time to accelerate.

displacement

#eylinders weight MPG
8

Optimize MPG by (chain 1): decreasing weight, de-
creasing displacement, and decreasing #cylinders.

The highlighted example has: low #cylinders, low
displacement, low weight, and high MPG.
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Suggestions: increase horsepower and decrease

weight.

Fig. 5: Selected panels from an automatically generated detective sequence for the Cars dataset. Some visualizations are
developed incrementally over the course of several panels. PCPs can be built up incrementally adding one dimension at a

time. Here, we only show the final views. The data examples are highlighted in yellow
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Intro Trade-off

6} [bctfe] | -Boiad]

Fig. 6: A detective or journalistic PCP sequence from a sim-
ple causal chain starts with an introduction of all variables
then builds up the chain from the goal or effect variable.
The two narratives lead to differing conclusions. A detective
sequence aims to show how to optimize the goal variables,
while a journalistic sequence points out how the goal vari-
ables cannot be optimized at the same time.

Causality Graph

A—B——C

the system selects one of the data samples whose values
are high in both variables. Conversely, data samples whose
values are either high and low or low and high are good
examples for negatively correlated variable pairs. Picking a
data sample of both types is done via rejection sampling
which randomly chooses a sample until all criteria are met.
All adjacent variable pairs in a PCP are simultaneously
considered. The same method to select data samples as
examples also applies to other narratives.

Detective Narrative

An exhaustive narrative and sequence may seem uneventful
as it traverses all causal relations from cause to effect. On
the other hand, a detective narrative reverses the traversal,

unraveling from an effect or ultimate goal to immediate
causes and finally unveiling the primary causes. In the same
fashion as a whodunit story [40], this narrative functions like
a puzzle for a reader to deduce answers or cause variables
from clues or effect variables.

All leaf variables without outgoing edges are legitimate
goal variables and can be traced back through their causal
chains to explain themselves. The goal variables and their
desired polarities are user-defined. The Cars dataset has two
leaf variables: ‘"MPG’” and ‘time to accelerate’. The former
should be high while the latter should be low.

To effectively use all supported visualization types in a
detective narrative, we mix scatterplot and PCP together and
use them for showing exactly two variables and more than
two variables, respectively. A simple causal chain turns into
a visualization sequence as illustrated in Figure 6 for PCP.

Figure 5 shows the visualization sequence from a detec-
tive narrative for the Cars dataset. The sequence begins with
an introductory PCP that presents all data variables. The
goal variables are shown in a scatterplot because there are
two goal variables. Then each chain is presented from its
goal variable; a new axis is incrementally added to the left
of the PCP. After presenting the whole chain, a data sample
that optimizes its goal is highlighted as an example. For
instance, the third chart of Figure 5 shows the causal chain
of “#cylinders’, ‘displacement’, ‘weight’, and ‘MPG’ with
a highlighted data sample that has low ‘#cylinders’, low
‘displacement’, and light ‘weight” and leads to the desired
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Fig. 7: Causal graph for the Sales dataset. Bold nodes involve
in a causal and narrative conflict.
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Fig. 8: A dramatic PCP sequence from a simple causal con-
flict starts with an overview of the conflict, shows the two
contrasting causal paths, and concludes with a resolution.

A

goal of high ‘MPG’. We use the same rejection sampling as
explained in the exhaustive narrative.

In the end of the detective narrative a conclusion sum-
marizes what variables should be increased or decreased
to achieve the optimal values of the goal variables. This is
particularly useful for conflicting causal relations. For ex-
ample, the two causal chains to optimize ‘time to accelerate’
in the Cars dataset are irreconcilable. One chain needs low
“#cylinders” and ‘displacement” while the other requires the
opposite. Our system recognizes these conflicting variables
further down the causal chains for all goals and excludes
them from the suggestions in the summary.

In the last chart of Figure 5, the suggestions for the Cars
dataset involve only the immediate causes ‘horsepower’
and ‘weight’. The goal variables in the suggestions are
shown in the middle of a PCP with the suggested immediate
causes to the left and right. This chart succinctly reveals
an engineering challenge exposed by the causal network,
i.e. the need to increase horsepower while simultaneously
keeping the weight low. The polyline coloring effectively
visualizes this. The maroon lines (high ‘horsepower’) lead
to low “‘MPG’ but achieve low “time to accelerate’, while the
green lines (low ‘weight’) lead to high ‘time to accelerate’
but achieve high ‘MPG’. A solution to this challenge may
be incorporating more lightweight material that reduces
weight and does not affect acceleration time.

Dramatic Narrative

The conflicting variables in the detective narrative and Frey-
tag’s pyramid of dramatic structure [41] inspired the dra-
matic narrative. The dramatic structure of five stages — ex-
position, rising action, climax, falling action, and resolution
— appear in many stories and should engage a reader’s
attention as it revolves around a conflict. We propose that a
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causal conflict can serve as a dramatic conflict and drive a
dramatic narrative.

To create such a narrative, a conflict must be formally
established. We use the definition of a causal collider or a
variable with more than one cause to establish a conflict in a
causal graph. A causal conflict occurs when a collider has at
least a pair of causes that are directly linked and their two
different paths are inconsistent.

The Cars dataset does not possess such a conflict, but the
causal graph for the Sales dataset [23] shown in Figure 7
contains one. In this graph, we observe that ‘Cost/Won
Lead’ positively affects ‘Actual Cost” which also positively
influences ‘Pipeline Revenue’, while ‘Cost/Won Lead’ di-
rectly causes ‘Pipeline Revenue’ in a negative way.

To construct a dramatic narrative graph, all colliders are
identified and each pair of causes of the same collider is
analyzed. First, both causes and the common effect are
displayed in the same visualization to emphasize their
confounding relations. Then a step-by-step walkthrough of
direct influence (the first cause to the collider) and indirect
influence (the first cause to the second cause to the collider)
is presented. In the end, a statistical analysis shows the
dominant path and cause. Data samples are highlighted to
visually aid causal inspection. The causal conflict and its
resulting visualization sequence are illustrated in Figure 8.

Figure 9 shows the crucial parts of the dramatic narrative
generated based on the Sales dataset. The narrative evolves
around whether ‘Cost/Won Lead” or ‘Actual Cost’ is more
influential and it concludes that it is ‘Cost/Won Lead’ that
actually affects ‘Pipeline Revenue’. The conflict resolution
should invite a reader to take a closer look at the data;
the polylines for ‘Cost/Won Lead’ look far more coherent
than those for ‘Actual Cost’” which have a more random
appearance suggesting a weaker causality.

Note that only single-level causal inconsistencies are
currently taken into consideration. Multilevel conflicts
such as the paths of displacement-weight-acceleration and
displacement-horsepower-acceleration in the Cars dataset
are possible but may result in a complicated narrative.

Journalistic Narrative

Another way to show conflicting variables is to present
them as a trade-off. Because this narrative is similar to
how a journalist would write a balanced story [42], we
call it a journalistic narrative. The process to find a conflict
is the same as a dramatic narrative. Similar to a detective
narrative, a journalistic narrative begins with an overview of
all variables. Then it shows user-defined goals and explains
the causes of each goal in a progressively built-up causal
chain in PCP, as shown in Figure 6.

Instead of a summary with suggestions as in a detective
narrative, a journalistic narrative points out the variables
that optimize only a subset of all goals. Such causes can be
found in a network among the lowest common ancestors
of the goals. The data polarities of all goal variables —
whether high or low values are preferable — are propagated
through the causal network. A trade-off happens when there
is a variable whose propagated polarities are opposing i.e.
its values cannot be adjusted to optimize two incompatible
requirements at the same time.
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GostWon Lead Actual Cost GostWon Lead Actual Cost CostWon Lead

Pipeine Revenue
200,000

a00 70,000

30,000

20000

Conflict: Cost/Won Lead and
Actual Cost explain Pipeline
Revenue in conflicting ways.

Protagonist’s view 1: High
Cost/Won Lead causes
high Actual Cost.

Antagonist’s view: High Ac-
tual Cost causes high Pipeline
Revenue; some exceptional low
Cost/Won Lead earn higher
Pipeline Revenue (at 75 C/WL,
the broken up blue line bundle).

Pipeline Revenue CostWon Lead Pipeiine Revenue CostWon Lead Pipeline Revenue Actual Cost

200,000 200,000

250 150,000

Resolution: A statistical anal-
ysis concludes that Cost/Won
Lead dominates the effect of

Protagonist’s view  2:
However, high Cost/Won
Lead causes low Pipeline

Revenue, with the Pipeline Revenue, confirming
exceptions at 75 C/WL the observed exceptions.
(the blue line bundle).

Fig. 9: An excerpt of a dramatic sequence for the Sales dataset. This set of frames describes the conflict that arises from the
relationships between Cost/Won Lead, Actual Cost, and Pipeline Revenue. See Figure 7 for the causal graph.

MPG #eylinders ~ displacement horsepower  weight time to accelerate year time to accelerate
8 82

#eylinders displacement weight MPG
8

1 5 10 15 20

Intro. Data dimensions: MPG, #cylinders, displace-
ment, horsepower, weight, time to accelerate and year

#eylinders displacement weight time to accelerate #eylinders
8 8

Optimize time to accelerate by (chain 2): decreas-
ing weight, decreasing displacement, and decreasing

#cylinders. increasing #cylinders.

The highlighted example has: low #cylinders, low
displacement, low weight, and low time to accelerate.

Goal 1: high MPG, Goal 2: low time to accelerate

Coloring indicates if samples meet both (purple), one
(blue/green), or neither (grey) goal polarities. Colors
differ from those used for clustering in the PCPs.

displacement

Optimize time to accelerate by (chain 3): increas-
ing horsepower (HP), increasing displacement, and

The highlighted example has: high #cylinders, high
displacement, high HP, and low time to accelerate.

a0 s
miles per gallon

Optimize MPG by (chain 1): decreasing weight, de-
creasing displacement, and decreasing #cylinders.
The highlighted example has: low #cylinders, low
displacement, low weight, and high MPG.

time to accelerate

horsepower time to accelerate

displacement

#eylinders MPG

Trade-off: MPG and time to accelerate.

The two cars highlighted separately in previous pan-
els are now shown together as incompatible choices.
Yet, the considerable fluctuations along both goal vari-
ables suggest that there might be compromises.

Fig. 10: Selected panels from an automatically generated journalistic sequence for the Cars dataset. As in Figure 5, we only
show the final views of visualizations that are developed over multiple panels.

In Figure 10, engine displacement in the Cars dataset is
the variable that trades off ‘"MPG’ and ‘time to accelerate’.
The system highlights two extreme cases and the PCP in the
summary tells the reader to choose between them.

4 IMPLEMENTATION

We implemented a prototype for creating a chart sequence
with the help of several libraries such as Simple Statis-
tics for basic data statistics, D3.js for visualizations, and
Syntagmatic’s Parallel Coordinates for PCP bundling. All
animations and interactions were responsive on any modern
browser. As described in Section 3, we used a previously
implemented tool to compute the causal graphs.

The datasets in all previous and upcoming examples
have 7-10 dimensions and up to 100s of data samples. They
were primarily chosen because their domains are suitable
for a general audience. The only input necessary from a
storyteller were a few additional properties to complement
a dataset such as data polarity. For example, in the College
dataset [43], we required user input to specify that a desir-
able college should have a high ranking and low tuition.

Our approach does not depend on any specific data
domain. To demonstrate this, we present two additional
sequences of the journalistic and detective narratives. Based
on the College dataset, Figure 11 shows a sequence that ex-
hibits a trade-off between school rankings and affordability.
From the PM10 dataset [39], another sequence in Figure 12
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“ s ® % ® ® 0 8 m ® w
US News score.

Intro. Data dimensions: academics, atmo-
sphere, nightlife, transportation, weather,
US News score and tuition.

Goall: high US News score.
Goal2: low tuition.

US News score

% 78 e e w0 s 0 ws om0 o
academics

Optimize US News score by: increasing
academics.

The highlighted example has: high aca-
demics and high US News score.

16000

T T T T R T T T
academics

Optimize tuition by: decreasing aca-
demics.

The highlighted example has: low aca-
demics and low tuition.

[]

Trade-off: US News score
and tuition.

The two highlighted col-
leges appear incompatible,
but compromises may exist.

Fig. 11: An abridged version of an automatically generated journalistic sequence for the College dataset explaining the
trade-off between college ranking and tuition. [...] indicates where the sequence has been shortened. As before, only the

final views are shown when visualization and text are developed over the course of multiple panels.

Concentration  #Cars/r  Temperature Wind Speed  Temp Diff Wind Direction  Hour
4 "

Intro. Data dimensions: Concentration,
#Cars/hr, Temperature, Wind Speed,
Temp Diff, Wind Direction and Hour.

Goal: low Concentration.

Optimize Concentration by (chain 1): in-
creasing Wind Speed.

The highlighted example has: high Wind
Speed and low Concentration.

Concentration

Optimize Concentration by (chain
2): decreasing #Cars/hr and Hour.

The highlighted example has: low
Hour, low #Cars/hr and low Conc.

Wind Speed

Concentration

Suggestions: increase Wind Speed
and decrease #Cars/hr and Hour

Fig. 12: An abridged version of an automatically generated defective sequence for the PM10 dataset. as before, only the final

views of multi-panel developments are shown.

investigates the cause of air pollution and describes that the
concentration of particles in the air is lower in the morning
(Hour is low) with fewer cars (low #Cars/hr) and when
there is a breeze (Wind Speed is higher).

5 VALIDATION

We conducted two studies to validate the usefulness of
causal sequences and the tool to control them. The first
study was crowd-sourced to measure whether our causal
sequences could help viewers grasp the relationships em-
bedded in multivariate data better than an ordinary se-
quence uninformed by causal relations. Besides quantitative
measures, we interviewed potential users of such sequences
to comment on causal sequences and our prototype. The
second study was qualitative in nature. Both studies were
granted an IRB exempt review as it presented minimal risks
and collected no identifiable information of any participant.

5.1 Quantitative Validation

We designed an experiment to compare how different scat-
terplot and PCP sequences support causal data understand-
ing. The sequence types were limited to exhaustive and
detective narratives because they require no causal conflicts
and exist in all datasets; they also represent the most
common principled analytical workflows. 50 participants
were recruited via Amazon Mechanical Turk and each was
compensated $5 for participating in the study.

5.1.1 Experiment Design

The study was conducted as a web-based questionnaire
consisting of an introduction, a tutorial on one of two
visualization types (scatterplot or PCP), a practice task, and
a series of four tasks featuring different chart sequences. For
each task, participants were asked to write a brief narrative
describing the relationships between dataset attributes that
they could infer from the provided chart sequences.

Before beginning the main task, participants received
a brief tutorial introducing the visualization format (scat-
terplot or PCP) and the concept of a sequence. The tuto-
rial used a few simple examples—such as showing that
as temperature increases, ice cream sales also increase—to
illustrate how one variable can relate to another within a
single view. No causal language was used. Participants then
answered a multiple-choice test question based on a similar
example to confirm their understanding of how to read
the plots. This ensured consistency across conditions while
minimizing interpretive bias. The full tutorial text and all
example sequences are provided in the supplement.

Each task was based on a different dataset — Cars, Sales,
College, and PM10 — to minimize learning effects. The chart
sequences varied across four types: exhaustive, detective,
spurious, and random. Exhaustive and detective sequences
corresponded to the narratives described in Section 3.2. In
random sequences, variables were grouped into pairs at ran-
dom. For spurious sequences, variables that were correlated
were grouped together and presented in a random order.
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TABLE 1: The averages of quantitative metrics — precision
(P), recall (R), and F1 score in percentage — of all sequences
in scatterplot and PCP.

Scatterplot PCP
Sequence
P R F1 P R F1
Exhaustive 8238 39.51 5341 70.81 4411 54.36
Detective 7405 5979 66.16 | 7375 90.74 8137
Spurious 4850 2352 3168 | 3278 1818  23.39
Random 15.04 4.48 690 | 15.88 7.26 9.96

Each participant was shown 4 out of the 16 possible dataset-
sequence combinations.

Responses from 9 out of 50 participants were excluded
due to invalid submissions for at least one task.! For each
visualization type, we collected approximately 5 valid re-
sponses per dataset-sequence combination. These responses
were analyzed to determine whether different chart se-
quences influenced participants’ ability to extract causal
relationships between dataset attributes.

5.1.2 Clause Analysis

We divided each response into clauses (relations) that im-
plied causality. Two of the co-authors independently an-
notated these clauses, and any non-causal clauses were
removed. After discussion and reconciliation, each clause
was assigned a score based on its accuracy: 0 for clauses that
identified an incorrect causal variable pair, 0.5 for clauses
that identified a correct pair but with the wrong causal
direction, and 1 for clauses that correctly identified both the
variable pair and the causal direction.

As the visualization sequences varied in length, we
computed the total score for each response as well as two
normalized metrics. The ratio of the total score to the num-
ber of clauses written was treated as the precision of the
response, while the ratio of the total score to the number
of variable pairs shown in the visualization was treated as
the recall. Following common practice in classification tasks,
we also calculated the F1 score as the harmonic mean of
precision and recall.

According to the average F1 scores shown in Table 1, the
exhaustive and detective sequences clearly outperformed the
spurious and random sequences. For the scatterplot condi-
tion, a one-way Analysis of Variance (ANOVA) confirmed
that there was a statistically significant difference among
sequence types (F'(3,76) = 24.85,p < 0.01). A post-hoc
Tukey’s Honestly Significant Difference (HSD) test found
that the average F1 score was significantly different in all
sequence pairs (p < 0.05) except the pair of exhaustive and
detective sequences (p = 0.67).

There was a statistically significant difference among
sequence types shown in PCP as well (F(3,80) = 21.47,p <
0.01). In a HSD test, the average F1 score was significantly
different in all sequence pairs (p < 0.01) except the pair of
causal sequences (exhaustive and detective, p = 0.15) and the
pair of control sequences (spurious and random, p = 0.38).

1. Some responses consisted of random or irrelevant text, such as
single characters, random numbers, or a list of attribute names. Others
provided explanations of dataset concepts, as generated with ChatGPT,
without addressing the relationships shown in the sequences.
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(b) PCP sequences.

Fig. 13: Average normalized causal structure scores for all (a)
scatterplot and (b) PCP sequences and the 4 datasets. Each
score averages 5 participants. A score of 1.0 would denote
that for each node with more than one in- or outgoing edge
all edges were identified. The last two sets of bars are the
Median and Average scores, respectively, across all datasets.

5.1.3 Causal Structure Analysis

To better understand which sequence strategies might sup-
port a more comprehensive causal understanding, we ana-
lyzed the degree of connectivity among individual clauses.
A node (attribute) in a causal graph can act as a mediator
(with both incoming and outgoing edges), a collider (with
only incoming edges), a confounder (with only outgoing
edges), or a combination of these. We consider a user to
have acquired a more comprehensive causal understanding
if their narrative contains valid clauses that reference a node
multiple times, regardless of its role as a mediator, collider,
or confounder.

For this analysis, we counted how often each node was
referenced by a user. Because the number of edges per
node varied, we normalized the counts by dividing by the
maximum possible mentions for each node. We visualize
both the total and normalized mention counts as heatmaps
for each dataset, included in the supplementary material.

Figure 13 provides a summary of the observed patterns.
Overall, we observe a clear trend suggesting an advantage
of both the detective and exhaustive narratives over the ran-
dom and spurious ones, although the distinction between
detective and exhaustive is more subtle — an ANOVA test
failed to establish a statistically significant difference. For
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PCP narratives, detective appears to outperform exhaustive
in both median and average scores, showing convincingly
better results for the PM10 and Sales datasets, with a near
tie for Cars and College. For scatterplot narratives, exhaustive
appears to perform better in the College dataset, whereas
detective shows an advantage in the Cars dataset, potentially
influenced by the larger number of plots forming the se-
quence (12 vs. 8, see supplement). The differences across the
other datasets are relatively minor. Taken together, these ex-
ploratory results suggest that if the goal is to identify causal
structures, detective may be the safer choice for PCP, while
for scatterplots, the choice between detective and exhaustive
may depend more on user preference.

5.2 Qualitative Validation

To complement our controlled study, we conducted an
exploratory qualitative evaluation with five domain ex-
perts: four data storytellers (S1-54) and one journalism
professor (P1). All had experience in descriptive data anal-
ysis and crafting narratives to communicate complex in-
sights—particularly on social issues—in a way that is acces-
sible and engaging to general audiences. The goal was to un-
derstand how users with communication expertise engage
with different narrative styles generated by our system and
gather early insights into their interpretability, storytelling
potential, and support for multivariate reasoning.

Each 20-30 minute session included a walkthrough of
narrative sequences—exhaustive, detective, dramatic, and
journalistic—based on the College, Cars, and Sales datasets.
Participants were asked to reflect on the clarity, structure,
and applicability of these sequences, and encouraged to
give open-ended feedback on usability and alignment with
professional storytelling practices.

Participants generally found the sequences understand-
able and aligned with their communication goals. They ap-
preciated the use of example data points beneath each view,
which helped ground the narratives and mirrors storytelling
approaches they use in practice. Notably, while four of the
five participants had not encountered parallel coordinate
plots before, they were able to make sense of the visual
encodings within the context of the narrative.

Participants differentiated between narrative types and
found some more compelling than others. The journalistic
sequence for the College dataset (Figure 11) drew particular
attention. P1 remarked that it resembled the structure of an
investigative story, presenting trade-offs and directional re-
lationships in a way that mirrored how real-world reporting
builds tension and supports argumentation. S4 commented
that the sequence “raises the kinds of questions a journalist
or policy analyst would want to explore further.” This
suggests that the journalistic narrative, in particular, may
naturally align with professional storytelling conventions.

Participants also offered constructive feedback for future
extensions. P1 and S4 emphasized the need for more tradi-
tional journalistic patterns such as grouping by geography
or time, surfacing extremes (e.g., top 10 or bottom 10),
and highlighting contrast. S1 and S3 requested support
for additional chart types, while S2 proposed the integra-
tion of multiple datasets within a single narrative. Several
participants suggested the ability to inject prior domain
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knowledge into the causal sequence (e.g., asserting a known
link), or to adjust the narrative length and complexity based
on audience needs.

Overall, these sessions suggest that causal narrative
styles generated by our system are interpretable and res-
onate with domain communicators. They offer structure and
entry points that align with familiar storytelling patterns
and participants were able to distinguish among narrative
types in terms of their communicative potential. While
exploratory, this feedback provides promising evidence that
the system supports meaningful engagement with complex
multivariate data and lays the foundation for more system-
atic comparative studies of narrative style in future work.

6 DiscussioN

Our quantitative evaluation showed that causal se-
quences improve understanding compared to random and
correlation-based (possibly spurious) sequences, underscor-
ing the importance of directionality in distinguishing cause
from effect. In the scatterplot condition, the exhaustive
sequence yielded higher average precision but lower recall
than the detective sequence. In contrast, for the PCP con-
dition, the detective sequence outperformed the exhaustive
one across all metrics—most notably in recall, likely due to
PCPs’ ability to show entire causal chains in a single view.
This suggests that PCPs may be inherently better suited than
scatterplots for visualizing causal structures. Although PCPs
are underutilized in general applications due to their visual
complexity, prior work has shown that interactive tools can
enhance their usability [44], and interactive tutorials can
reduce the learning curve [45]. Finally, while our use of edge
bundling may have influenced participants’ perception, al-
ternative rendering styles [46], [47] may further help clarify
data relationships in PCPs.

To better understand the depth of causal reasoning, we
also analyzed participants’ narratives at the level of causal
structure. By measuring how often participants referenced
nodes with multiple causal connections, we observed that
detective and exhaustive sequences supported more com-
prehensive causal understanding than random and spurious
ones. While these trends were consistent across datasets, the
small number of participants per dataset-strategy combina-
tion (approximately five) means that the results should be
viewed as exploratory.

Nonetheless, the convergence of results across both
clause-level and structure-level analyses increases our con-
fidence in our causal sequencing approach. In future work,
we plan to replicate and extend these findings with larger
and more diverse participant samples to further validate the
effectiveness of our sequencing strategies, also including the
journalistic and the dramatic sequencing scheme.

Note that our quantitative results relied on free-form text
answers and their causal words and structures. For instance,
“A causes B” could be naturally phrased as “B increases as
A increases” or “the more A is, the more B becomes.” Some
clauses were debatable, but the co-authors, as two indepen-
dent coders, tried our best to give each clause the benefit
of the doubt. Furthermore, although individual causal pair
recall may not fully represent an understanding of the entire
network, theories in Mental Models [48] and Constructivist
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Learning [49] suggest that knowing individual relationships
aids in building a comprehensive mental model of a system.
We plan to implement more direct methods like interviews
and scenario analyses in future research to more effectively
gauge overall network comprehension.

The qualitative validation confirmed the usefulness
of causal sequences—a feature unavailable in current
tools—according to the group of selected professionals. As
suggested by the participants, this system could be a tool
in a journalistic writing process. Journalists would be in the
loop as some computer-generated recommendations might
seem unconventional. For example, in Figure 10, the system
suggests higher wind speed and early hours to reduce PM10
concentration. Journalists can interpret the suggestions as
possible real-life solutions including removing wind barri-
ers or reducing highway fees in the early morning.

In our study we also experimented with the structure
of exhaustive sequences, particularly whether to include
full flashbacks to the root node in every path. For shorter
chains, we opted to skip the root-to-intermediate node recap
to reduce cognitive load and avoid redundancy, assuming
viewers could retain key steps in working memory. How-
ever, in longer or more branching sequences—such as in
the Sales dataset—we included full flashbacks to preserve
clarity (see Figure 2 middle row for the two options; the sup-
plement provides a visualization of these individual chains
for all four datasets). Interestingly, the more verbose Sales
sequence received slightly lower comprehension scores,
suggesting that shorter, more memory-efficient sequences
may be equally or more effective. This tradeoff warrants
further investigation in future work.

Our current implementation has a few technical limita-
tions. First, scalability has not yet been tested beyond small
datasets—those used in our examples have fewer than a
dozen dimensions and a few hundred data points. In prac-
tice, standard feature selection or dimensionality reduction
techniques can be applied to keep larger datasets manage-
able without significantly reducing interpretive value. Sec-
ond, the system is not yet integrated with a live causal infer-
ence engine; all causal relationships are precomputed. While
on-the-fly computation is technically feasible, it would in-
troduce execution delays that may affect interactivity.

Finally, our approach relies on a predefined causal graph,
and the quality of the narratives depends on the accuracy of
this graph. While the visual causal modeling tool we use [36]
[37] offers opportunities for user inspection and correction,
future work could better support uncertainty and ambiguity
in causal relationships. Techniques such as bootstrapping or
refutation checks may help assess the plausibility of com-
peting causal paths [50], while recent methods like neural
DAG learning [51] can uncover non-linear causal structures.
Integrating these types of approaches could allow our sys-
tem to visualize not just a single graph but a set of candidate
explanations, further enhancing interpretability and trust.

7 CONCLUSION

We presented a framework that generates coherent visual-
ization sequences by traversing a causal graph derived from
a dataset with minimal metadata. Our evaluation shows that
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these sequences outperform correlation-based and random
alternatives in supporting causal understanding.

In future work we would like to extend the approach to
additional traversal strategies, visualization types, and data
modalities such as time-varying and categorical variables,
as suggested by participants. We also plan to incorporate
natural language descriptions, generated by large language
models, to complement the visuals and enhance comprehen-
sion of causal relationships.

Finally, while our studies confirm the effectiveness of
causal narrative sequences, they did not explore why certain
styles resonate more or how preferences vary by user exper-
tise or context. Future work will investigate these factors
to better tailor narrative designs to different audiences.
A related direction is to investigate whether exposing the
causal graph to users adds benefits. For example, one could
imagine an interface in which users click on an edge in the
graph to view the corresponding bivariate scatterplot, link-
ing structural understanding with concrete data patterns.

ACKNOWLEDGEMENTS
Partial funding was provided by NSF grant IIS 1527112.

REFERENCES

[1] A. Inselberg and B. Dimsdale, “Parallel Coordinates: a Tool for
Visualizing Multi-Dimensional Geometry,” in IEEE Visualization,
1990, pp. 361-378.

[2] A.Mead, “Review of the Development of Multidimensional Scal-
ing Methods,” Journal of the Royal Statistical Society: Series D (The
Statistician), vol. 41, no. 1, pp. 27-39, 1992.

[3] L.Vander Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 11, 2008.

[4] L. Mclnnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction,” arXiv
preprint arXiv:1802.03426, 2018.

[5] T. Munzner, “Visualization analysis and design,” in Proceedings
of the Special Interest Group on Computer Graphics and Interactive
Techniques Conference Courses, 2025, pp. 1-2.

[6] . Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Univer-
sity of Wisconsin Press, 1983.

[7] ]. Hartigan, “Printer Graphics for Clustering,” Journal of Statistical
Computation and Simulation, vol. 4, no. 3, pp. 187-213, 1975.

[8] ArccGISPro, “Scatter Plot Matrix,” https://pro.arcgis.
com/en/pro-app/3.0/help/analysis/geoprocessing/charts/
scatter-plot-matrix.htm, [Online; accessed 19-July-2023].

[9] M. Ankerst, S. Berchtold, and D. Keim, “Similarity Clustering of
Dimensions for an Enhanced Visualization of Multidimensional
Data,” in IEEE Information Visualization. 1EEE, 1998, pp. 52-60.

[10] G. Albuquerque, M. Eisemann, D. Lehmann, H. Theisel, and M. A.
Magnor, “Quality-based Visualization Matrices,” in VMV, 2009,
pp. 341-350.

[11] M. Sips, B. Neubert, J. Lewis, and P. Hanrahan, “Selecting Good
Views of High-Dimensional Data using Class Consistency,” in
Computer Graphics Forum, vol. 28, no. 3, 2009, pp. 831-838.

[12] L. Wilkinson, A. Anand, and R. Grossman, “Graph-Theoretic
Scagnostics,” in IEEE Info Vis, 2005, pp. 21-21.

[13] T. Dang and L. Wilkinson, “Scagexplorer: Exploring Scatterplots
by their Scagnostics,” in IEEE Pacific Vis, 2014, pp. 73-80.

[14] N. Elmgqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the Dice:
Multidimensional Visual Exploration Using Scatterplot Matrix
Navigation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1539-1148, 2008

[15] E. Segel and J. Heer, “Narrative Visualization: Telling Stories with
Data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1139-48, 2010

[16] J. Gower, S. Lubbe, and N. Le Roux, Understanding Biplots.
Wiley & Sons, 2011.

John



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

[17] B. Wang and K. Mueller, “The Subspace Voyager: Exploring High-
Dimensional Data Along a Continuum of Salient 3D Subspaces,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24,
no. 2, pp. 1204-1222, 2017.

[18] D. Asimov, “The grand tour: a tool for viewing multidimensional
data,” SIAM Journal on Scientific and Statistical Computing, vol. 6,
no. 1, pp. 128-143, 1985.

[19] J. Friedman and ]. Tukey, “A projection pursuit algorithm for
exploratory data analysis,” IEEE Transactions on Computers, vol.
100, no. 9, pp. 881-890, 1974.

[20] A. Tatu ef al., “Combining Automated Analysis and Visualization
Techniques for Effective Exploration of High-Dimensional Data,”
in IEEE VAST, 2009, pp. 59-66.

[21] S. Johansson and ]. Johansson, “Interactive Dimensionality Re-
duction through User-Defined Combinations of Quality Metrics,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 6, pp- 993-1000, 2009.

[22] A. Artero, M. de Oliveira, and H. Levkowitz, “Enhanced High
Dimensional Data Visualization through Dimension Reduction
and Attribute Arrangement,” in IEEE InfoVis, 2006, pp. 707-712.

[23] Z. Zhang, K. T. McDonnell, and K. Mueller, “A Network-based
Interface for the Exploration of High-Dimensional Data Spaces,”
in IEEE Pacific Vis, 2012, pp. 17-24.

[24] Z. Zhang, K. T. McDonnell, E. Zadok, and K. Mueller, “Visual
Correlation Analysis of Numerical and Categorical Data on the
Correlation Map,” IEEE Transactions on Visualization and Computer
Graphics, vol. 21, no. 2, pp. 289-303, 2015.

[25] A. Dasgupta and R. Kosara, “Pargnostics: Screen-Space Metrics
for Parallel Coordinates,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, no. 6, pp. 1017-1026, 2010.

[26] W. Peng, M. Ward, and E. Rundensteiner, “Clutter Reduction in
Multi-Dimensional Data Visualization using Dimension Reorder-
ing,” in IEEE InfoVis, 2004, pp. 89-96.

[27] B. Ferdosi and J. Roerdink, “Visualizing High-Dimensional Struc-
tures by Dimension Ordering and Filtering using Subspace Analy-
sis,” in Computer Graphics Forum, vol. 30, no. 3, 2011, pp. 1121-1130.

[28] ]J. Yang, W. Peng, M. Ward, and E. Rundensteiner, “Interactive
Hierarchical Dimension Ordering, Spacing and Filtering for Ex-
ploration of High Dimensional Datasets,” in IEEE InfoVis, 2003,
pp- 105-112.

[29] M. Blumenschein, X. Zhang, D. Pomerenke, D. Keim, and J. Fuchs,
“Evaluating Reordering Strategies for Cluster Identification in
Parallel Coordinates,” in Computer Graphics Forum, vol. 39, no. 3,
2020, pp. 537-549.

[30] A. Tyagi, T. Estro, G. Kuenning, E. Zadok, and K. Mueller, “PC-
Expo: A Metrics-Based Interactive Axes Reordering Method for
Parallel Coordinate Displays,” IEEE Transactions on Visualization
and Computer Graphics, vol. 29, no. 1, pp. 712-722, 2023.

[31] C. Tong, R. Roberts et al., “Storytelling and Visualization: An
Extended Survey,” Information, vol. 9, no. 3, p. 65, 2018.

[32] J. Hullman and N. Diakopoulos, “Visualization Rhetoric: Framing
Effects in Narrative Visualization,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 17, no. 12, pp. 2231-40, dec 2011.

[33] A.Kale, Y. Wu, and J. Hullman, “Causal support: Modeling causal
inferences with visualizations,” IEEE Transactions on Visualization
and Computer Graphics, vol. 28, no. 1, pp. 1150-1160, 2021.

[34] ]J. Pearl and Judea, Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

[35] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and
Search. MIT Press, 2001.

[36] J. Wang and K. Mueller, “The Visual Causality Analyst: An In-
teractive Interface for Causal Reasoning.” IEEE Transactions on
Visualization and Computer Graphics, vol. 22, no. 1, pp. 230-9, 2016.

[37] ——, “Visual causality analysis made practical,” in 2017 IEEE
Conference on Visual Analytics Science and Technology (VAST), 2017,
pp- 151-161.

[38] J. Pearl and D. Mackenzie, The Book of Why: the New Science of Cause
and Effect. Basic Books, 2018.

[39] “StatLib: Datasets Archive,” http://lib.stat.cmu.edu/datasets/.

[40] D. Herman, M. Jahn, and M.-L. Ryan, Routledge Encyclopedia of
Narrative Theory. Routledge, 2010.

[41] G. Freytag, Technique of the Drama: an Exposition of Dramatic Com-
position and Art.  S. C. Griggs, 1894.

[42] C. Cotter, News Talk: Investigating the Language of Journalism. Cam-
bridge University Press, 2010.

[43] J. E.Nam and K. Mueller, “Tripadvisor"{ND}: A tourism-inspired
high-dimensional space exploration framework with overview

13

and detail,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 19, no. 2, pp. 291-305, 2012.

[44] ]J. Heinrich and D. Weiskopf, “State of the art of parallel coordi-
nates.” Eurographics (State of the Art Reports), pp. 95-116, 2013.

[45] P. Ruchikachorn and K. Mueller, “Learning visualizations by anal-
ogy: Promoting visual literacy through visualization morphing,”
IEEE Transactions on Visualization and Computer Graphics, vol. 21,
no. 9, pp. 1028-1044, 2015.

[46] G. Palmas, M. Bachynskyi, A. Oulasvirta, H. Seidel, and
T. Weinkauf, “An Edge-Bundling Layout for Interactive Parallel
Coordinates,” in IEEE Pacific Vis, 2014, pp. 57-64.

[47] K. McDonnell and K. Mueller, “Illustrative Parallel Coordinates,”
Computer Graphics Forum, vol. 27, no. 3, pp. 1031-1038, 2008.

[48] P. Johnson-Laird, Mental Models: Towards a Cognitive Science of
Language, Inference, and Consciousness. Harvard University Press,

[49] L. Vygotsky and M. Cole, Mind in Society: Development of Higher
Psychological Processes. Harvard University Press, 1978.

[50] A. Sharma and E. Kiciman, “Dowhy: An end-to-end library for
causal inference,” arXiv preprint arXiv:2011.04216, 2020.

[51] S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-
Julien, “Gradient-based neural dag learning,” arXiv preprint
arXiv:1906.02226, 2019.

Puripant Ruchikachorn received his PhD from Stony Brook University
as a recipient of the International Fulbright Science and Technology
Award. He now teaches at Chulalongkorn University, Bangkok, Thailand.
His research interests include information visualization, data analytics,
and human-computer interaction.

Darius Coelho holds a PhD in Computer Science from Stony Brook
University. His research interests include information visualization, vi-
sual analytics, and human-computer interaction. He has received two
best paper awards for his work and currently works as software architect
at Akai Kaeru LLC.

Jun Wang earned a PhD in computer science from Stony Brook Univer-
sity and a BS and MS in computer science from Shandong University,
China. He is now employed at Google in a R&D position. Jun’s research
interests are visual analytics, information visualization, and data mining.
For more information, see https://junwang23.github.io/.

Kristina Striegnitz received a joint PhD from Saarland University in
Saarbriicken, Germany, and Henri Poincaré University in Nancy, France.
She is currently an Associate Professor of computer science at Union
College, NY. Her research interests are natural language generation and
dialog systems. For more information see http://cs.union.edu/~striegnk.

Klaus Mueller received a PhD in computer science from The Ohio
State University. He is currently a professor of computer science at
Stony Brook University. His research interests include visual analytics,
explainable Al, data science, and medical imaging. For more information
see http://www.cs.stonybrook.edu/~mueller.



